
ACKNOWLEDGEMENT

I would like to acknowledge my gratitude to Prof. (Miss) S. N. Kakarwal for

guiding me in preparation of this report. Prof. P. J. Ahire, Head of Department of

Computer Science and Engineering, has constantly encouraged me to complete my

report as per the schedule. My thanks are due to him.

I would also like to thank Prof. M. B. Nagori for providing access to IEEE

related resources.

Himanshu Phirke was helpful at all stages of the work involved in preparing

this report. I must record my thanks to him. My brother Anand enlightened me on the

conventions of writing a report of technical nature. I thank him for bringing this report

to its present form.

Last but not least I would like to thank Ankit and Ajit for providing me

necessary software.

(Onkar Shinde)

SYNOPSIS

FireWire has been implemented since 1995. But very few of students, end

users in India know about it. This report has been written to highlight most important

aspects of FireWire.

The report covers brief history, design goals and the position of FireWire in

comparison to other prevalent technologies.

Major attention is given on technical details of hardware, I/O specifications,

protocols, data transfer modes, data protection features of FireWire.

It also tries to cover the latest status of FireWire including latest standards,

improvements in transmission of data, improvements in architecture to support more

advanced features.

Lastly the report discusses implementation details, present and upcoming

applications, advantages and disadvantages of FireWire.

CONTENTS

INTRODUCTION..4
What is FireWire?.. 4
Brief history of FireWire.. 4

WHY FIREWIRE?.. 5
Design Goals.. 5
Where FireWire stands?... 6
Zorro vs. Robin Hood (FireWire vs. USB).. 7

WORKING AND TECHNICAL DETAILS..8
Connectors and Cables... 8
I/O specifications..8
Data transfer over FireWire..10
Isochronous transport... 19
Data protection features..20

LATEST STATUS... 25
The next generation bus – FireWire 800 (IEEE 1394b)...25
Data transfer speeds upto 800 Mbps.. 25
Distance upto 100 m...26
Transmission mediums...27

IMPLEMENTATION DETAILS... 28
Hardware requirements.. 28
Software requirements..28

APPLICATIONS..30
Mass storage... 30
Video.. 30
Digital audio... 31
Digital still cameras..32
Printers and scanners.. 32
Home entertainment... 33
Networking...33
Analog-to-digital YUV video converter ..33
Analog-to-DV converter...34

ADVANTAGES.. 35

CONCLUSION...37

GLOSSARY..38

BIBLIOGRAPHY.. 39

INTRODUCTION
What is FireWire?

FireWire is a high-speed serial input/output (I/O) technology for connecting

peripheral devices to computer or to each other. It’s one of the fastest peripheral

standards ever developed. Originally developed by Apple, FireWire is now an official

industry standard IEEE 1394.

Brief history of FireWire

• Introduced by Apple

First introduced by Apple around 1990, the standard was designed to

support high bandwidth requirements of devices such as digital audio/video

equipments and high performance mass storage.

• Standardized by IEEE

The standard was conceived by Apple and then developed within IEEE

1394 working group. This standard defines both a backplane physical layer

and a point-to-point cable connected virtual bus connections. The backplane

version operates at 12.5, 25 or 50 Mbps. The cable version supports data rates

of 100, 200, 400 Mbps.

Three versions of standard 1394 have been approved so far.

I. 1394-1995 was the original standard. Driven by Apple

and based largely on Apple developed technology,

1394-1995 supported data transfer rates up to 400 Mbps

and distances up to 4.5 meters, and introduced the

concept of self-managing, peer-to-peer multimedia

interconnect.

II. 1394a, adopted in 2000, added and clarified

specifications for performance optimization and power

management on FireWire buses.

III. 1394b, adopted in 2002, raises maximum FireWire

speeds with architectural specifications up to 3.2 Gbps

and distances to 100 meters. It also allows more types of

media (including optical fiber cabling) to be used for

FireWire connections.

• Marketed by Apple and Sony

The name FireWire, which was coined by Apple, is still used by a few

vendors.

Others have adopted the name i.Link, which is trademarked by Sony Corp.,

and has become a popular moniker for 1394-enabled products and technology

in Japan.

WHY FIREWIRE?

Interfaces like Serial, Parallel, Parallel (PCI enhanced), IDE, SCSI, 10-Base T

provide connectivity solutions for different devices. Also they talk with devices with

their own protocol.

USB has been advancement over these interfaces mainly due to two points:

1) Standardization of bus

2) Connectivity solution for a wide range of devices.

But when it comes to using devices that deal with hundreds of megabytes of

data USB falls short. Examples of such devices are digital still cameras, DV

camcorders, DVD writers, magneto-optical drives, external hard disk drives.

In such situations FireWire stands above all.

Design Goals
Designers of FireWire had several goals in mind when they created the

standard. They have been successfully achieved as per details below.

• Fast transfer of Data

FireWire provides data transfer rate upto 400 Mbps.

• Lots of devices on the bus

Upto 63 devices can be connected on a single bus using daisy chaining.

• Ease of use

No extra accessories required to plug devices to your computer.

• Hot pluggable

Devices can be connected & disconnected even when power is on.

• Provide power through cable

FireWire can provide upto 45W (8 to 30 Volts, 1.5 amps max) to the

device, which is enough for high performance disk drives & rapid battery

charging.

• Plug and Play

Operating system automatically detects new hardware and demands for

diver disk.

• Low cabling & implementation cost

Cost is low when implementing high data dealing devices such as setting

an audio recording studio.

Where FireWire stands?
Lets take a look at comparison of FireWire speed with other interfaces.

0.01
0.9264
2

10
12
16

40
40

80
100

133.6
160

264
400

0 50 100 150 200 250 300 350 400

Data transfer rate in Mbps

ADB

Serial
Geoport

10-Base T

USB

Parallel (Standard)

Parallel (PCI Enhanced)

SCSI

SCSI II

100-Base T

IDE

Ultra SCSI

Ultra IDE

FireWire

Fig. 1 - Data transfer rates over various interfaces

Zorro vs. Robin Hood (FireWire vs. USB)

Just as both Zorro and Robin Hood were great thieves both FireWire and USB

are expert at stealing data.

Zorro was a horse-riding swordsman and Robin Hood was an expert foot-

archer. This is analogous to higher speed and advanced technology of FireWire rather

than USB.

Though Zorro and Robin Hood worked with identical principle they worked

for different classes of people in different conditions. That is analogous to different

device class of FireWire and USB under different implementation requirements.

Let us compare FireWire with USB in different aspects.

USB FireWire

Developers

USB was developed by a joint
venture between Intel, Microsoft,
IBM, Compaq, DEC, NEC and

Northern Telecom.

Firewire was first developed by
Apple, but modified by other

companies over licensing
conflicts. It is also known as IEEE

1394.

Transfer
rates

USB supports two different
transfer rates: 1.5 Mbps for low

speed devices and 12 Mbps
maximum rate.

The Firewire chipset allows three
different rates: 100 Mbps, 200

Mbps and 400Mbps

Maximum
of devices 127 63

On bus
power Up to 2.5W Up to 45W

Data flow

USB has three types of data
communication formats depending

whether the device needs an
occasional signal, a continuous

stream of information (real time)
or a mass transfer.

Firewire packets are transmitted
to all devices like USB. However,

each packet is given a certain
amount of time to send data until

it another device gets control.
This makes Firewire a time-sliced

protocol.

Number of
wires

Four. Two of the wires are used to
supply power to each device. The
other two are used to transfer data.

Six. Two of the wires are used to
supply power to each device. The

other four are used to transfer
data.

Network
Topology Hub Daisy Chaining

Connection Host based Supports Peer-to-peer

Table 1. Comparison of USB and FireWire

WORKING AND TECHNICAL DETAILS
Connectors and Cables

FireWire connectors come into two configurations:

1) 4 pin – 4 wires, 2 twisted pairs data pins.

2) 6 pin – 6 wires, 2 twisted pairs data pins, 2 power pins.

Fig. 2 - Cable cross-section

Fig. 3 - Description of cable

I/O specifications

• Input

Voltage range: 8 to 33 volts (V)

Input current range: approximately 1 watt (W)

• Output

8

Voltage range: approximately 15 to 20 V

Output current range: up to approximately 6 W, shared between the ports

on the computer

• Safety

The FireWire interface on the computer has three self-resetting fuses.

• Repeater Function

Built-in repeater function allows FireWire data to pass between the

computer and external devices even when the computer is turned off. Power

from devices with power supplies runs to the repeater via the FireWire cable.

The repeater does not work with devices that do not supply power.

Repeater operates between 8 and 33 V and uses approximately 1 W.

9

Data transfer over FireWire

PROTOCOL STACK

Fig. 4 - Protocol Stack

IEEE 1394 involves the low three IS0 protocol layers: the Physical Layer, the

Link Layer, and the Transaction Layer, plus a Serial Bus Management process that

connects to all three layers. The Physical Layer connects to the 1394 connector and

the other layers connect to the application.

The Physical Layer provides the electrical and mechanical connection between

the 1394 device and the 1394 cable. Besides the actual data transmission and

reception tasks, the Physical Layer provides arbitration to insure all devices have fair

access to the bus.

The Link Layer provides data packet delivery service for the two types of

packet delivery: asynchronous and isochronous. As mentioned before, asynchronous is

the conventional transmit-acknowledgment protocol and isochronous is a real-time

guaranteed-bandwidth protocol for just-in-time delivery of information.

The Transaction Layer supports the asynchronous protocol write, read, and

lock commands. A write sends data from the originator to the receiver and a read

returns the data to the originator. Lock combines the function of the write and read

commands by producing a round trip routing of data between sender and receiver

including processing by the receiver.

Serial Bus Management provides overall configuration control of the serial bus

in the form of optimizing arbitration timing, guarantee of adequate electrical power

10

for all devices on the bus, assignment of which 1394 device is the cycle master,

assignment of isochronous channel ID, and basic notification of errors. Bus

management is built upon IEEE 1212 standard register architecture.

CSR ADDRESSING

Fig. 5 - CSR Addressing details

FireWire is an interconnect (bus) that conforms to the CSR architecture,

ISO/IEC 13213:1994. FireWire permits communications between nodes over shared

physical media at speeds that range, at present, from 100 to 400 Mbps.

The CSR architecture describes a memory-mapped address space that Serial

Bus implements as a 64-bit fixed addressing scheme. Within the address space,

1. Ten bits are allocated for bus ID (up to a maximum of 1,023

buses)

2. Six are allocated for node physical ID (up to 63 per bus)

3. Remaining 48 bits (offset) describe a per node address

space of 256 terabytes.

The CSR architecture, by convention, splits a node's address space into two

regions with different behavioral characteristics.

1. The lower portion, up to but not including 0xFFFF F000

0000, is EXPECTED to behave as memory in response to

read and write transactions.

2. The upper portion is more like a traditional IO space: read

and write transactions in this area usually have side effects.

11

Control and status registers (CSRs) that have FIFO behavior

customarily are implemented in this region.

Within the 64-bit address, the 16-bit node ID (bus ID and physical ID) is

analogous to a network hardware address---but 1394 node IDs are variable and subject

to reassignment each time one or more nodes are added to or removed from the bus.

NOTE: Although the 16-bit node ID contains a bus ID, at present there is no standard method to

connect separately enumerated Serial Buses. Active development of a standard for Serial Bus to

Serial Bus bridges is underway in the IEEE P1394.1 working group. Unless extended by some

future standard, the IPv4 over 1394 protocols specified by this document may not operate

correctly across bridges.

The 1394 link layer provides a packet delivery service with both confirmed

(acknowledged) and unconfirmed packets. Two levels of service are available:

"asynchronous" packets are sent on a best-effort basis while "isochronous" packets are

guaranteed to be delivered with bounded latency. Confirmed packets are always

asynchronous but unconfirmed packets may be either asynchronous or isochronous.

Data payloads vary with implementations and may range from one octet up to a

maximum determined by the transmission speed (at 100 Mbps, named S100, the

maximum asynchronous data payload is 512 octets while at S400 it is 2048 octets).

NOTE: Extensions in IEEE P1394b contemplate additional speeds of 800, 1600 and 3200 Mbps.

LINK ENCAPSULATION AND FRAGMENTATION

All IP datagrams (broadcast, unicast or multicast), 1394 ARP

requests/responses and MCAP advertisements/solicitations that are transferred via

1394 block write requests or stream packets SHALL be encapsulated within the

packet's data payload. The maximum size of data payload, in octets, is constrained by

the speed at which the packet is transmitted.

Speed Asynchronous Isochronous
+------------------------------------+
| S100 | 512 | 1024 |
| S200 | 1024 | 2048 |

12

S400	2048	4096
S800	4096	8192
S1600	8192	16384
S3200	16384	32768
+------------------------------------+

Table 1 - Maximum data payloads (octets)

The maximum data payload for asynchronous requests and responses may also

be restricted by the capabilities of the sending or receiving node(s); this is specified by

max_rec in either the bus information block or 1394 ARP response.

 For either of these reasons, the maximum data payload transmissible

between IP-capable nodes may be less than the default 1500 octet maximum

transmission unit (MTU) specified by this document. This requires that the

encapsulation format also permit 1394 link-level fragmentation and reassembly of IP

datagrams.

Global asynchronous stream packet (GASP) format

Some IP datagrams, as well as 1394 ARP requests and responses, may be

transported via asynchronous stream packets. When asynchronous stream packets are

used, their format SHALL conform to the global asynchronous stream packet (GASP)

format specified by IEEE P1394a. The GASP format illustrated below is

INFORMATIVE and reproduced for ease of reference, only.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| data_length |tag| channel | 0x0A | sy |
+-+
| header_CRC |
+-+
| source_ID | specifier_ID_hi |
+-+
|specifier_ID_lo| version |
+-+
| |
+--- data ---+
| |
+-+
| data_CRC |
+-+

Fig. 6 - GASP format

13

The source_ID field SHALL specify the node ID of the sending node and

SHALL be equal to the most significant 16 bits of the sender's NODE_IDS register.

 The specifier_ID_hi and specifier_ID_lo fields together SHALL contain the

value 0x00 005E, the 24-bit organizationally unique identifier (OUI) assigned by the

IEEE Registration Authority (RA) to IANA.

 The version field SHALL be one.

NOTE: Because the GASP format utilizes the first two quadlets of data payload in an

asynchronous stream packet format, the maximum payloads cited in Table 1 are effectively

reduced by eight octets. In the clauses that follow, references to the first quadlet of data payload

mean the first quadlet usable for an IP datagram or 1394 ARP request or response. When the

GASP format is used, this is the third quadlet of the data payload for the packet.

Encapsulation header

All IP datagrams transported over 1394 are prefixed by an encapsulation

header with one of the formats illustrated below.

If an entire IP datagram may be transmitted within a single 1394 packet, it is

unfragmented and the first quadlet of the data payload SHALL conform to the format

illustrated below.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | lf| reserved | ether_type |
 +-+

Fig. 7 - Unfragmented encapsulation header format

The lf field SHALL be zero.

The ether_type field SHALL indicate the nature of the datagram that follows, as

specified by the following table.
ether_type Datagram

+-------------------------+
0x0800	IPv4
0x0806	1394 ARP
0x8861	MCAP
+-------------------------+

14

NOTE: Other network protocols, identified by different values of ether_type, may use the

encapsulation formats defined herein but such use is outside of the scope of this document.

In cases where the length of the datagram exceeds the maximum data payload

supported by the sender and all recipients, the datagram SHALL be broken into link

fragments; the first two quadlets of the data payload for the first link fragment SHALL

conform to the format shown below.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | lf|rsv| datagram_size | ether_type |
 +-+
 | dgl | reserved |
 +-+

Fig. 8a - First fragment encapsulation header format

The second and subsequent link fragments (up to and including the last)

SHALL conform to the format shown below.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | lf|rsv| datagram_size | rsv | fragment_offset |
 +-+
 | dgl | reserved |
 +-+

Fig. 8b - Subsequent fragment(s) encapsulation header format

The definition and usage of the fields is as follows:

The lf field SHALL specify the relative position of the link fragment within the IP

datagram, as encoded by the following table.
lf Position

+------------------------+
0	Unfragmented
1	First
2	Last
3	Interior
+------------------------+

datagram_size: The encoded size of the entire IP datagram. The value of

datagram_size SHALL be the same for all link fragments of an IP datagram and

15

SHALL be one less than the value of Total Length in the datagram's IP header (see

STD 5, RFC 791).

ether_type: This field is present only in the first link fragment and SHALL have a

value of 0x0800, which indicates an IPv4 datagram.

fragment_offset: This field is present only in the second and subsequent link

fragments and SHALL specify the offset, in octets, of the fragment from the beginning

of the IP datagram. The first octet of the datagram (the start of the IP header) has an

offset of zero; the implicit value of fragment_offset in the first link fragment is zero.

dgl: The value of dgl (datagram label) SHALL be the same for all link fragments of an

IP datagram. The sender SHALL increment dgl for successive, fragmented datagrams;

the incremented value of dgl SHALL wrap from 65,535 back to zero.

All IP datagrams, regardless of the mode of transmission (block write requests

or stream packets) SHALL be preceded by one of the above described encapsulation

headers. This permits uniform software treatment of datagrams without regard to the

mode of their transmission.

Link fragment reassembly

The recipient of an IP datagram transmitted via more than one 1394 packet

SHALL use both the sender's source_ID (obtained from either the synchronous packet

header or the GASP header) and dgl to identify all the link fragments from a single

datagram.

Upon receipt of a link fragment, the recipient may place the data payload

(absent the encapsulation header) within an IP datagram reassembly buffer at the

location specified by fragment_offset. The size of the reassembly buffer may be

determined from datagram_size.

If a link fragment is received that overlaps another fragment identified by the

same source_ID and dgl, the fragment(s) already accumulated in the reassembly buffer

16

SHALL be discarded. A fresh reassembly may be commenced with the most recently

received link fragment. Fragment overlap is determined by the combination of

fragment_offset from the encapsulation header and data_length from the 1394 packet

header.

Upon detection of a Serial Bus reset, recipient(s) SHALL discard all link

fragments of all partially reassembled IP datagrams and sender(s) SHALL discard all

not yet transmitted link fragments of all partially transmitted IP datagrams.

SERIAL BUS ADDRESS RESOLUTION PROTOCOL (1394 ARP)

Methods to determine the hardware address of a device from its corresponding

IP address are inextricably tied to the transport medium utilized by the device. In the

description below and throughout this document, the acronym 1394 ARP pertains

solely to an address resolution protocol whose methods and data structures are

specific to 1394.

1394 ARP requests SHALL be transmitted by the same means as broadcast IP

datagrams; 1394 ARP responses MAY be transmitted in the same way or they MAY

be transmitted as block write requests addressed to the sender_unicast_FIFO address

identified by the 1394 ARP request. A 1394 ARP request/response is 32 octets and

SHALL conform to the format illustrated by following figure.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | hardware_type (0x0018) | protocol_type (0x0800) |
 +-+
 | hw_addr_len | IP_addr_len | opcode |
 +-+
 | |
 +--- sender_unique_ID ---+
 | |
 +-+
 | sender_max_rec| sspd | sender_unicast_FIFO_hi |
 +-+
 | sender_unicast_FIFO_lo |
 +-+
 | sender_IP_address |
 +-+
 | target_IP_address |
 +-+

Fig. 9 - 1394 ARP request/response format

17

1394 ARP requests and responses transported by asynchronous stream packets

SHALL be encapsulated within the GASP format specified by IEEE P1394a (see also

4.1). The recipient of a 1394 ARP request or response SHALL ignore it unless the

most significant ten bits of the source_ID field (whether obtained from the GASP

header of an asynchronous stream packet or the packet header of a block write

request) are equal to either 0x3FF or the most significant ten bits of the recipient's

NODE_IDS register.

Field usage in a 1394 ARP request/response is as follows:

hardware_type: This field indicates 1394 and SHALL have a value of 0x0018.

protocol_type: This field SHALL have a value of 0x0800; this indicates that the

protocol addresses in the 1394 ARP request/response conform to the format for IP

addresses.

hw_addr_len: This field indicates the size, in octets, of the 1394-dependent hardware

address associated with an IP address and SHALL have a value of 16.

IP_addr_len: This field indicates the size, in octets, of an IP version 4 (IPv4) address

and SHALL have a value of 4.

opcode: This field SHALL be one to indicate a 1394 ARP request and two to indicate

a 1394 ARP response.

sender_unique_ID: This field SHALL contain the node unique ID of the sender and

SHALL be equal to that specified in the sender's bus information block.

sender_max_rec: This field SHALL be equal to the value of max_rec in the sender's

configuration ROM bus information block.

sspd: This field SHALL be set to the lesser of the sender's link speed and PHY speed.

The link speed is the maximum speed at which the link may send or receive packets;

the PHY speed is the maximum speed at which the PHY may send, receive or repeat

18

packets. The table below specifies the encoding used for sspd; all values not specified

are RESERVED for future standardization.
Value Speed

+---------------+
0	S100
1	S200
2	S400
3	S800
4	S1600
5	S3200
+---------------+

Table 2 - Speed codes

sender_unicast_FIFO_hi and sender_unicast_FIFO_lo: These fields together SHALL

specify the 48-bit offset of the sender's FIFO available for the receipt of IP datagrams

in the format specified by section 6. The offset of a sender's unicast FIFO SHALL

NOT change, except as the result of a power reset.

sender_IP_address: This field SHALL specify the IP address of the sender.

target_IP_address: In a 1394 ARP request, this field SHALL specify the IP address

from which the sender desires a response. In a 1394 ARP response, it SHALL be

IGNORED.

Isochronous transport

Isochronous, just in time delivery, allows low-cost implementations of time-

critical multimedia integaces.

Both asynchronous and isochronous data transfers are supported by Firewire.

The asynchronous format transfers data and transaction layer information to an

explicit address. The isochronous format broadcasts data based on channel numbers

rather than specific addressing. Isochronous packets are issued on the average of each

125 µs in support of time-sensitive applications. Providing both asynchronous and

isochronous formats on the same interface allows both non-real-time critical

applications such as printers, and scanners and real-time critical applications such as

video and audio to operate on the same bus transfers. Isochronous transfers provide

guaranteed transmission opportunities at defined intervals; if a packet is not received

successfully, it is not resent. In asynchronous transfers, the intervals between

19

transmissions can vary, and data can be resent if it is missed. Isochronous, just in time

delivery, allows low-cost implementations of time-critical multimedia devices.

For example, sending a live TV broadcast requires isochronous transmission to

ensure that each frame arrives on time and in the correct order. By contrast, storing

data on a hard disk drive can be done asynchronously. It’s okay for dropped data to be

resent, and it doesn’t matter in what order the data arrives, because each packet is

tagged with an address or sequence number to reliably identify it.

FireWire is one of very few interfaces that combine both isochronous and

asynchronous capabilities. FireWire can reserve up to 80 percent of its bandwidth for

one or more isochronous channels, making it an excellent interface for applications

that require real-time data transmission.

With isochronous transport, the sender requests an isochronous channel with a

specific bandwidth. Isochronous channel IDS are transmitted followed by the packet

data. The receiver monitors the incoming data’s channel ID and accepts only data with

the specified ID. User applications are responsible for determining how many

isochronous channels are needed and their required bandwidth. Although up to 64

isochronous channels may be defined, the diagram below shows 2 channels.

Packet Frame = 125 micro-seconds

Isochronous
Channel #1
Time Slot

Isochronous
Channel #2
Time Slot

Time Available for Asynchronous
Data Transfer

 ______________ Time Indicator

Data protection features

Digital content over 1394 can be robustly protected using Digital Transmission

Copy Protection (DTCP). DTCP support device authentication, content encryption,

and renewability, should a DTCP device ever be compromised. Encoding rules can be

specified for content, e.g., "copy freely," "copy once," or "copy never." The motion

20

picture industry recognizes DTCP as satisfactory to them in permitting the

transmission of their content over 1394.

The Digital Transmission Content Protection Specification defines a

cryptographic protocol for protecting audio/video entertainment content from

unauthorized copying, intercepting, and tampering as it traverses digital transmission

mechanisms such as a high-performance serial bus that conforms to the IEEE 1394-

1995 standard. Only legitimate entertainment content delivered to a source device via

another approved copy protection system (such as the DVD Content Scrambling

System) will be protected by this copy protection system. The use of this specification

and access to the intellectual property and cryptographic materials required to

implement it will be the subject of a license. The Digital Transmission Licensing

Administrator (DTLA) is responsible for establishing and administering the content

protection system described in this specification. While DTCP has been designed for

use by devices attached to serial buses as defined by the IEEE 1394-1995 standard, the

developers anticipate that it will be appropriate for use with future extensions to this

standard, other transmission systems, and other types of content as authorized by the

DTLA.

 Following are the four layers of copy protection:

• Copy control information (CCI)

Content owners need a way to specify how their content can be

used (“copy-one-generation,” “copy-never,” etc.). This content protection

system is capable of securely communicating copy control information

(CCI) between devices in two ways:

1. The Encryption Mode Indicator (EMI)

provides easily accessible yet secure

transmission of CCI via the most

significant two bits of the sy field of

the isochronous packet header.

2. CCI is embedded in the content stream

(e.g. MPEG). This form of CCI is

processed only by devices which

recognize the specific content format.

21

• Device authentication and key exchange (AKE)

Before sharing valuable information, a connected device must first

verify that another connected device is authentic. To balance the protection

requirements of the content industries with the real-world requirements of

PC and consumer electronics (CE) device users, this specification includes

two authentication levels, Full and Restricted.

1. Full Authentication can be used with

all content protected by the system.

2. Restricted Authentication enables the

protection of “copy-one-generation”

and “no-more-copies” content only.

Copying devices such as digital VCRs

employ this kind of authentication.

• Content encryption

Devices include a channel cipher subsystem that encrypts and

decrypts copyrighted content. To ensure interoperability, all devices must

support the specific cipher specified as the baseline cipher. The subsystem

can also support additional ciphers, whose use is negotiated during

authentication.

• System renewability

Devices that support Full Authentication can receive and process

system renewability messages (SRMs) created by the DTLA and

distributed with content and new devices. System renewability ensures

long-term integrity of the system through the revocation of compromised

devices.

Given below is the overview of content protection. In this

overview, the source device has been instructed to transmit a copy

protection stream of content. In this and subsequent diagrams, a source

device is one that can send a stream of content. A sink device is one that

can receive a stream of content. Multifunction devices such as PCs and

22

record/playback devices such as digital VCRs can be both source and sink

devices.

Fig. 10 – Data transfer using DTCP

1. The source device initiates the transmission of a stream of

encrypted content marked with the appropriate copy

protection status (e.g., “copy-one-generation,” “copy-never,”

or “no-more-copies”) via the EMI bits.

2. Upon receiving the content stream, the sink device inspects

the EMI bits to determine the copy protection status of the

content. If the content is marked “copy-never,” the sink

device requests that the source device initiate Full AKE. If

the content is marked “copy-one-generation” or “no-more-

copies” the sink device will request Full AKE, if supported,

or Restricted AKE. If the sink device has already performed

the appropriate authentication, it can immediately proceed to

Step 4.

3. When the source device receives the authentication request,

it proceeds with the type of authentication requested by the

sink device, unless Full AKE is requested but the source

device can only support Restricted AKE, in which case

Restricted AKE is performed.

4. Once the devices have completed the required AKE

procedure, a content channel encryption key can be

23

exchanged between them. This key is used to encrypt the

content at the source device and decrypt the content at the

sink.

24

LATEST STATUS

The next generation bus – FireWire 800 (IEEE 1394b)

Now FireWire 800, the next generation of FireWire technology, promises to

spur the development of more innovative high-performance devices and applications.

FireWire800 (an implementation of the IEEE 1394b standard approved in 2002)

doubles the throughput of the original technology, dramatically increases the

maximum distance of FireWire connections, and supports many new types of cabling.

Now transferring data at up to 800 Mbps, FireWire 800 delivers more than

double the effective bandwidth of the USB 2.0 peripheral standard. That means you

can send more than a CD’s worth of data every ten seconds.

12

400

480

800

0 100 200 300 400 500 600 700 800

Data transfer rate in Mbps

USB 1.1

FireWire

USB 2.0

FireWire 800

Fig. 11 – FireWire 800 more faster than USB 2.0

Data transfer speeds upto 800 Mbps

FireWire 800 is capable of transferring data at 800 Mbps. Twice the speed of

the original FireWire. This performance increase has been achieved primarily by using

the same highly efficient encoding scheme used by Gigabit Ethernet and Fiber

Channel. In fact, the FireWire roadmap outlined in the IEEE 1394b standard will

eventually take the theoretical bit rate to 1600 Mbps and then up to a staggering 3200

Mbps. That’s 3.2 gigabits per second, which will make FireWire indispensable for

25

transferring massive data files and for even the most demanding video applications,

such as working with uncompressed high-definition (HD) video or multiple standard-

definition (SD) video streams.

Distance upto 100 m

Not only is FireWire 800 twice as fast as before, but it can be used over much

longer distances. The 1394b specification allows the use of various types of cabling,

each offering different speed/distance capabilities, as shown below:

Cable type 100

Mbps

200

Mbps

400

Mbps

800

Mbps

1600

Mbps

3200

Mbps
9-pin shielded twisted pair

copper
4.5 m 4.5 m 4.5 m 4.5 m 4.5 m 4.5 m

CAT-5 unshielded twisted

pair copper (standard

Ethernet cable)

100 m - - - - -

Step-index plastic optical

fiber
50 m 50 m - - - -

Hard polymer-clad plastic

optical fiber
100 m 100 m - - - -

Glass optical fiber 100 m 100 m 100 m 100 m 100 m 100 m

Table 3 - Data transfer rates on FireWire 800 with different cables

FireWire 800 (1394b) hubs even make it possible to connect FireWire 400

(1394a) devices up to 100 meters apart. Neither the computer nor the remote devices

need to support FireWire 800, because the new hubs and their associated cables work

with FireWire 400 equipment. New FireWire 800 (and other 1394b) devices can, of

course, communicate over long connections directly through their own FireWire 800

ports; no hub is required to gain this distance benefit in a pure FireWire 800

connections.

26

Transmission mediums

Following are the various transmission mediums that can be used with

FireWire 800.

• UTP-5 (ISO/IEC 11801 ch7)

Cat-5 Unshielded Twisted Pair and RJ-45 connector
Well-known for ethernet

TX on pins 1/2, RX on pins 7/8

Transformer isolation

Similar electrical specification as other standards (1V pk-pk binary)

Adaptive equalization in the receiver

Allows 100m operation

• Plastic Optic Fiber / Hard Polymer Clad Fiber

POF: 1000 µm step index multimode plastic optic fiber
Suitable for up to 50m

HPCF: 225 µm graded index multimode hard polymer clad fiber
Suitable for up to 100m

Same transceiver spec for both

Low cost, easy to install

Fiber alleviates emissions and interference problems

PN connector

• Glass fiber (MMF)

Leverage VCSEL (Vertical Cavity Surface Emitting Laser) technology

Leverage Fibre Channel and Gigabit Ethernet specifications

50 micron multimode fiber (MMF)

LC connector

Leverage Fibre Channel/ Gigabit Ethernet specifications

27

IMPLEMENTATION DETAILS

FireWire devices can be connected to a computer in two ways.

• On-board FireWire Bus/Port

FireWire devices can be connected to a computer through an onboard

port provided by motherboard manufacturer. Current very few vendors provide

this facility.

Ex.

Apple Mac based on G4 processors provides FireWire ports.

Asus, which manufactures motherboards for Intel and AMD processor

based systems provides 2 FireWire ports on their A7N8X model.

• FireWire PCI Adaptor

FireWire products can also be connected to computer using FireWire

PCI adaptors that fit into standard PCI expansion slots.

Hardware requirements

• For PC

233 MHz processor or better, 400 MHz plus recommended for digital

video

PCI bus 2.1 (For FireWire PCI Adaptor or PCI Card Bus only)

• For Macintosh

G3 or better Macintosh

PCI bus 2.1 (For FireWire PCI Adaptor or PCI Card Bus only)

Software requirements

Following are the operating system requirements for FireWire devices. No

special software other than device drivers is required to use FireWire devices.

• For PC

Windows: -

Windows 98SE, 2000, Millenium (ME), XP

28

FireWire Software RAID requires software supported only on

Windows 2000, but will function as multi-drive storage clusters on all

other supported Windows systems.

A special patch from Microsoft is available for Windows 98SE and is

recommended for users of FireWire storage devices.

Linux: -

Linux kernel version 2.4 or above

FireWire RAID will function as multi-drive storage clusters Linux

systems.

• For Macintosh

Mac OS 9.1 and above

FireWire Software RAID requires special software supported only on Mac

OS 8.6 to Mac OS 9.2, but will function as multi-drive storage clusters on Mac

OS X systems.

Mac users using a system prior to OS 9.1 may require FireWire drivers

from Apple in order to use any FireWire products.

29

APPLICATIONS

Following is the list of areas where FireWire has been implemented or in

process of implementation. Some FireWire products are available while some are

upcoming product.

Mass storage

Storage devices, especially portable ones are being radically transformed by

the adoption of FireWire. Not only does FireWire permit an external hard disk drive

to be mounted by simply connecting a single plug, it can even provide enough

electricity to power the drive. FireWire mass storage devices include hard disk drives,

magneto-optical drives, high-capacity removable drives, tape drives, and CD/DVD

products, including both read-only and read/write drives.

Ex.

§ Iomega external hard drive with 30 GB capacities.

§ AITE130UL – AIT-2 USB/i.Link® Combo External Drive. A StorStation

tape drive by Sony. External and implements i.Link® (Another variant if

FireWire by Sony) interface. Capacity 130GB

Video

Digital video (DV) camcorders capture video and audio and can send a perfect

copy to a computer for editing, adding special effects, and making other modifications

to create a finished video. FireWire provides the high-speed connection required to

download digital video quickly. FireWire 800 even has the necessary throughput for

bandwidth-intensive applications that were not possible over the original FireWire,

such as multiple-stream, uncompressed, standard-definition video. The long-distance

capability of FireWire 800 also gives production studios and similar businesses more

flexibility to locate each piece of equipment where it’s most appropriate, rather than

having to put everything adjacent to the computer.

30

Digital camcorders, whose internal electronics are all digital, store the

incoming audio and video on tape in a digital format called DV rather than in an

analog format such as High 8. DV produces full-size, full-motion video of 720 by 480

pixels at 30 frames per second. With FireWire, bringing DV into a computer is

nothing more than a simple file transfer between the camera and the computer at 35

megabytes per second.

Digital camcorders vary in price from $850 to $5,000 and up. Most cameras

use a single charge-coupled device (CCD, the electronic device that captures the

image) to digitize the incoming light; higher-end cameras employ three CCDs, one

each for red, green, and blue. Higher-end cameras generally work better with low light

conditions, and often have interchangeable lenses.

Ex.

§ DCRTRV19KITB - DCR-TRV19 MiniDV Handycam® Camcorder by

Sony. Implements i.Link®* DV Interface (IEEE 1394)

Digital audio

FireWire delivers the bandwidth required for high-quality digital audio. Even

FireWire 400 has enough bandwidth over a single connector for hundreds of channels

of noise-free, high-resolution digital audio and up to 256 channels of MIDI. FireWire

800 can handle twice as many simultaneous real-time streams. Support for cabling up

to 100 meters gives you more configuration options with FireWire 800 than solutions

such as USB, enabling you to use a Macintosh system as a virtual patch bay that

connects audio devices in situations ranging from a personal studio to a huge multi-

room production facility. You can even hot-swap devices in and out of the audio

processing chain as your needs change.

Digital recording, processing, and storage bring many advantages to today’s

musicians, producers, engineers and, of course, listeners. These advantages include

clean transmission and audio integrity even with multiple generations of copying.

FireWire offers a high-speed, flexible bridge between professional digital audio

components. In addition, because FireWire has been widely embraced by consumer

31

electronics manufacturers, you can easily integrate video cameras, receivers, and other

consumer gear with professional audio equipment.

Ex.

§ IPod – A portable digital audio player with capacities 10GB, 20GB, 40GB.

Implements FireWire interface, which is used for data transfer as well as

battery charging.

Digital still cameras

Digital cameras are one of the fastest-growing peripheral segments in

computing. They allow you to capture high-quality still images and transfer them

digitally to your Macintosh system, eliminating the need for traditional film

developing and scanning.

FireWire provides a means for transferring images from the camera to the

computer that is much faster and more convenient than serial, parallel, or even USB

connections, especially for high-resolution images that can be hundreds of megabytes

in size. The high bandwidth of FireWire 800 will be increasingly important as

consumer product manufacturers offer cameras with higher and higher mega pixel

ratings.

FireWire connections appeared first on higher-end cameras, which generally

have larger file sizes (for higher-quality images) and sell at higher prices. These

cameras are pushing the state of the art in CCD technology, with the ability to capture

up to 6 million pixels with a single shutter click. When printed out on high-quality

color photo printers, the images from these cameras are often indistinguishable from

traditional photos at first glance.

Printers and scanners

The benefits of FireWire printers and scanners include faster direct

connections for high-quality imaging applications and the ability to free up Ethernet

bandwidth by sharing printers within small FireWire-equipped workgroups.

32

Printers and scanners also benefit from the built-in power capabilities of

FireWire. Portable printers don’t need a separate battery, and consumer and film

scanners don’t need wall-mounted power supplies.

First FireWire printers are expected to be higher-end professional products

with higher prices than their USB counterparts. USB printers are aimed at the cost-

conscious home user, while FireWire printers will be professional workplace products

at first.

Home entertainment

Set-top boxes, personal video recorders (PVRs), game consoles, home stereo

equipment, DVD players, digital TVs, interactive TVs, and computers all have a need

to communicate using a common plug-and-play, high-speed interconnection that’s

capable of efficiently transmitting video, audio, graphics, and Internet data. More and

more of these devices are already available with FireWire ports, so they can easily be

integrated into the modern home entertainment system.

Ex.

§ Sony Playstation 2 implements FireWire interface.

Networking

Workgroup computers that have FireWire or other 1394 ports can be linked

via FireWire and communicate using standard IP networking protocols. FireWire can

also be used to cost-effectively share a printer, scanner, camera, or other device.

Networking with FireWire offers several advantages over Ethernet. FireWire

400 is faster than 100BASE-T, the most common Ethernet speed, and FireWire 800

comes close to the speed of 1000BASE-T. FireWire 800, with its ability to guarantee

the timing interval of data packets, can also deliver smooth real-time video.

Analog-to-digital YUV video converter

33

This converter lets you use existing analog camcorders, TVs, and VCRs with a

FireWire-based Macintosh system. Instead of taking up a PCI slot, it handles analog-

to-digital conversion through a small external box connected to a FireWire port on the

computer. The resulting video files are QuickTime movies in the raw video format—

they are not DV, MPEG, M-JPEG, or Sorenson format until you choose to convert

them to a specific format using QuickTime.

Analog-to-DV converter

 This product converts incoming analog audio and video to a DV-compressed

digital stream before sending it to your Macintosh system over FireWire. The

conversion happens in real time and essentially makes all analog audio/video products

appear to the computer as DV devices with high-quality video streams. It also allows

for the export of DV video to analog video.

34

ADVANTAGES

• A digital interface

No need to convert digital data into analog for better signal integrity.

• A physically small thin serial cable

Replaces today's bulky and expensive interfaces.

• Easy to use

No need for terminators, device IDs, screws, or complicated set-ups.

• Hot pluggable

Devices can be added and removed while the bus is active.

• Scalable

The Standard defines 100, 200, and 400 Mbps devices and can support
the multiple speeds on a single bus.

• Fast, guaranteed bandwidth

The Standard supports guaranteed delivery of time critical data, which
enables smaller buffers (lower cost).

• Flexible

The Standard supports free form daisy chaining and branching for peer-
to-peer implementations. FireWire is a peer-to-peer interface. This allows
dubbing from one camcorder to another without a computer. It also allows
multiple computers to share a given peripheral without any special support in
the peripheral or the computers. It is a result of all of these features that
FireWire has become the digital interface of choice and its acceptance is
growing.

• On Bus Power

While USB 2.0 allows at most 2.5W of power — enough for a simple,
slow device like a mouse — FireWire devices can provide or consume up to
45W of power, plenty for high-performance disk drives and rapid battery
charging. That’s why iPod only needs one cord for both data and power.

• Real-Time Data Delivery

35

Unlike many other data transfer technologies, FireWire can guarantee
real-time delivery of data. This is critical for streaming media applications
such as audio and video, where delayed or out-of-order frames are
unacceptable. The data traffic between FireWire nodes is divided into
isochronous and asynchronous transfers. Isochronous transfers provide
guaranteed transmission opportunities at defined intervals; if a packet is not
received successfully, it is not resent. In asynchronous transfers, the intervals
between transmissions can vary, and data can be resent if it’s missed. For
example, sending a live TV broadcast requires isochronous transmission to
ensure that each frame arrives on time and in the correct order. By contrast,
storing data on a hard disk drive can be done asynchronously. Its okay for
dropped data to be resent, and it doesn’t matter in what order the data arrives,
because each packet is tagged with an address or sequence number to reliably
identify it. FireWire is one of very few interfaces that combine both
isochronous and asynchronous capabilities. FireWire can reserve up to 80
percent of its bandwidth for one or more isochronous channels, making it an
excellent interface for applications that require real-time data transmission.

• Boot Your OS from 1394

Windows 2000 and its next revision, Windows Whistler, allow for
booting from 1394 hard drives on computers with BIOS support for 1394
booting. Hardware manufacturers are working toward delivering the ability to
boot from these drives now.

36

CONCLUSION

It’s clear that Apple’s Firewire has satisfied the definition of a good bus design

—it has expanded far beyond its original intent. The 1394-1995, 1394a-2000 serial

bus has the bandwidth capacity to displace most other peripheral connection

communication methods in use today, including parallel, RS232, SCSI, USB 1.0 and

USB 2.0, and consolidate them into a unified high-performance serial bus. As

consumer multimedia and computing applications continue to merge, the peer-to-peer

flexibility and the serial bus advantages of the IEEE 1394 standard will become

increasingly popular. As demonstrated by the increasing bandwidth of 1394b, there’s

no immediate end in sight to the amount of performance that can be extracted from

this protocol. With backward compatibility in mind, contributors to the evolving

standard are opening up a new way of computing that will provide increasing

flexibility and portability of applications.

Design of copy protection systems and especially with their deployment

schedule. Every effort is made to assist the studios in choosing a system design that is

appropriate to the task and then assist in the implementation as a part of the IEEE

1394 interface. For the first time, cable, satellite, broadcast, and the CE manufacturers

are all on the same side of an issue, all equally concerned with copy protection cost,

complexity, customer service and satisfaction issues, and the impact on the

deployment schedule for digital services.

Finally, the hot plugging, power sourcing and dynamic reconfiguration

abilities make 1394 a user-friendly environment. The features of 1394 will allow

plugging in a computer expansion system as easily as plugging into AC power,

providing communications on demand without having to shut down and reconfigure

each time an I/O device is added or removed.

37

GLOSSARY

ADB: Apple Desktop Bus. The first bus created by Apple.

GeoPort: This is a port created by Apple for use with Macintosh devices

10-Base T: A networking port standard transmitting data at 10 Mbps upto 100 m and
common for LANs

Parallel (Standard): Standard 16-bit port for used in primitive PCs and Commodore
64 computers. Handshaking (coordination between devices) was done by the driver.

Parallel (PCI enhanced): This is the current standard in current PC computers.
Handshaking is done through the port itself.

SCSI II: An improved 16-bit version of SCSI (Small Computer Serial Interface) with
addition wires to transmit data in parallel.

IDE: Integrated Drive Electronics

USB: Universal Serial Bus.

Datagram: An Internet message that conforms to the format specified by STD 5, RFC
791

Octet: 8 bits of data.

Quadlet: Four octets, or 32 bits, of data.

DTCP: Digital Transmission Content Protection.

38

BIBLIOGRAPHY
• Everything related to basic information of IEEE standards, drafts of

standards (accessible to members only) and other related information can
be found on IEEE website.

http://www.ieee.org

• IEEE 1394 trade association established to help vendors include FireWire
in their products.

http://www.1394ta.org

• Apple's page about FireWire. You can also find links to tech-brief and
factsheet.

http://www.apple.com/firewire

• A range of FireWire products including harddisks, CD drives, Combo
drives (CD-R/CD-RW/DVD).

http://www.firewiredirect.com

• System Requirements

http://www.firewiredirect.com/site/support/supportpages/system.shtml

• Consumer electronics products of FireWire

http://www.1394ta.org/About/products/consumer_products.html

• RFC of IPv4 over FireWire

http://www.faqs.org/rfcs/rfc2734.html

• Asus's website to find their motherboards implementing FireWire.

http://www.asus.com

• Consumer electronics products by Sony implementing i.Link (another
implementation of IEEE 1394).

http://www.sony.com

• A guide for students on writing technical reports.

http://www.kevinboone.com/howto_report.html

39

